Endogenous acetylcholine enhances synchronized interneuron activity in rat neocortex.
نویسندگان
چکیده
Application of 4-aminopyridine (4-AP) along with EAA) receptor antagonists produces gamma-aminobutyric acid (GABAA) receptor-dependent synchronized activity in interneurons. This results in waves of activity propagating through upper cortical layers. Because interneurons in the neocortex are excited by nicotinic acetylcholine receptor (nAChR) agonists, ACh may influence synchronization of these local neocortical interneuronal networks. To study this possibility, we have used voltage-sensitive dye imaging using the fluorescent dye RH 414 (30 microM) in rat neocortical slices. Recordings were obtained in the presence of 4-AP (100 microM) and the EAA receptor antagonists D-2-amino-5-phosphonvaleric acid (20 microM) and 6-cyano-7-nitro-quinoxaline-2,3-dione (10 microM). In response to intracortical stimulation, localized or propagated activity restricted to upper cortical layers was seen. Bath application of the ACh esterase inhibitor neostigmine (10 microM) and the nAChR agonist 1,1-dimethyl-4-phenyl-piperazinium iodide (DMPP; 10 microM) increased the response amplitude, the extent of spread, and the duration of this activity. These changes were seen in 13 of 16 slices tested with neostigmine (10 microM) and 4 of 7 slices tested with DMPP (10 microM). Application of the muscarinic AChR antagonist atropine (1 microM) did not block the enhancement of activity by neostigmine (n = 7). Application of dihydro-beta-erythroidine (10 microM), known, at this concentration, to selectively antagonize alpha4beta2-like nAChRs, blocked the effect of neostigmine (n = 5). The selective alpha7-like nAChR antagonist methyllycaconitine (50 nM) was ineffective (n = 5). These results suggest that activation of alpha4beta2-like nAChRs by endogenously released ACh can enhance synchronized activity in local neocortical inhibitory networks.
منابع مشابه
JN-00881-2005-R2 Endogenous acetylcholine enhances synchronized interneuron activity in rat neocortex
Application of 4-aminopyridine (4-AP) along with excitatory amino acid (EAA) receptor antagonists produces γ-aminobutyric acid (GABAA) receptor-dependent synchronized activity in interneurons. This results in waves of activity propagating through upper cortical layers. Since interneurons in the neocortex are excited by nicotinic acetylcholine receptor (nAChR) agonists, ACh may influence synchro...
متن کاملCholinergic circuit modulation through differential recruitment of neocortical interneuron types during behaviour.
Acetylcholine is a crucial neuromodulator for attention, learning and memory. Release of acetylcholine in primary sensory cortex enhances processing of sensory stimuli, and many in vitro studies have pinpointed cellular mechanisms that could mediate this effect. In contrast, how cholinergic modulation shapes the function of intact circuits during behaviour is only beginning to emerge. Here we r...
متن کاملENDOGENOUS RELEASE OF OPIATES BY REPETITIVE ELECTRICAL FIELD STIMULATION IN THE GUINEA-PIG AND RAT ILEAL LONGITUDINAL MUSCLE
The effect of repetitive electrical field stimulation and the response of the guinea-pig and rat ileal longitudinal muscle to single pulse stimulations was examined. Single pulse field stimulation produced twitch contraction which was inhibited by repetitive field stimulation (10 Hz, 40V, 0.5 msec for 5 m). This inhibition was largely, though never completely, reversed by naloxone. Contrac...
متن کاملInput-specific effects of acetylcholine on sensory and intracortical evoked responses in the "barrel cortex" in vivo.
The somatosensory neocortex processes extrinsic information from the thalamus and intrinsic information from local circuits. We compared the effects of acetylcholine (Ach) on neocortical field potential responses evoked by stimulation of the whiskers and by local electrical stimulation in the upper layers of the neocortex vibrissae representation ("barrel cortex") of adult rats anesthetized wit...
متن کاملPerisomatic GABA Release and Thalamocortical Integration onto Neocortical Excitatory Cells Are Regulated by Neuromodulators
Neuromodulators such as acetylcholine, serotonin, and noradrenaline are powerful regulators of neocortical activity. Although it is well established that cortical inhibition is the target of these modulations, little is known about their effects on GABA release from specific interneuron types. This knowledge is necessary to gain a mechanistic understanding of the actions of neuromodulators beca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 95 3 شماره
صفحات -
تاریخ انتشار 2006